
Verified Progress Tracking for Timely Dataflow
Matthias Brun !

Department of Computer Science, ETH Zürich, Switzerland

Sára Decova
Department of Computer Science, ETH Zürich, Switzerland

Andrea Lattuada !

Department of Computer Science, ETH Zürich, Switzerland

Dmitriy Traytel !

Department of Computer Science, University of Copenhagen, Denmark

Abstract
Large-scale stream processing systems often follow the dataflow paradigm, which enforces a program
structure that exposes a high degree of parallelism. The Timely Dataflow distributed system supports
expressive cyclic dataflows for which it offers low-latency data- and pipeline-parallel stream processing.
To achieve high expressiveness and performance, Timely Dataflow uses an intricate distributed proto-
col for tracking the computation’s progress. We modeled the progress tracking protocol as a combina-
tion of two independent transition systems in the Isabelle/HOL proof assistant. We specified and veri-
fied the safety of the two components and of the combined protocol. To this end, we identified abstract
assumptions on dataflow programs that are sufficient for safety and were not previously formalized.

2012 ACM Subject Classification Security and privacy Ñ Logic and verification; Computing method-
ologies Ñ Distributed algorithms; Software and its engineering Ñ Data flow languages

Keywords and phrases safety, distributed systems, timely dataflow, Isabelle/HOL

Digital Object Identifier 10.4230/LIPIcs.ITP.2021.10

Supplementary Material https://www.isa-afp.org/entries/Progress_Tracking.html

1 Introduction

The dataflow programming model represents a program as a directed graph of interconnected
operators that perform per-tuple data transformations. A message (an incoming datum)
arrives at an input (a root of the dataflow) and flows along the graph’s edges into operators.
Each operator takes the message, processes it, and emits any resulting derived messages.

This model enables automatic and seamless parallelization of tasks on large multiprocessor
systems and cluster-scale deployments. Many research-oriented and industry-grade systems
have employed this model to describe a variety of large scale data analytics and processing
tasks. Dataflow programming models with timestamp-based, fine-grained coordination, also
called time-aware dataflow [24], incur significantly less intrinsic overhead [26].

In a time-aware dataflow system, all messages are associated with a timestamp, and
operator instances need to know up-to-date (timestamp) frontiers—lower bounds on what
timestamps may still appear as their inputs. When informed that all data for a range of
timestamps has been delivered, an operator instance can complete the computation on input
data for that range of timestamps, produce the resulting output, and retire those timestamps.

A progress tracking mechanism is a core component of the dataflow system. It receives
information on outstanding timestamps from operator instances, exchanges this information
with other system workers (cores, nodes) and disseminates up-to-date approximations of the
frontiers to all operator instances.

The progress tracking mechanism must be correct. Incorrect approximations of the
frontiers can result in subtle concurrency errors, which may only appear under certain load

© Matthias Brun, Sára Decova, Andrea Lattuada, and Dmitriy Traytel;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Interactive Theorem Proving (ITP 2021).
Editors: Liron Cohen and Cezary Kaliszyk; Article No. 10; pp. 10:1–10:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matthias.brun@inf.ethz.ch
mailto:andrea.lattuada@inf.ethz.ch
mailto:traytel@di.ku.dk
https://orcid.org/0000-0001-7982-2768
https://doi.org/10.4230/LIPIcs.ITP.2021.10
https://www.isa-afp.org/entries/Progress_Tracking.html
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


10:2 Verified Progress Tracking for Timely Dataflow

and deployment circumstances. In this work, we formally model in Isabelle/HOL and prove
the safety of the progress tracking protocol of Timely Dataflow [1, 26, 27] (Section 2), a
time-aware dataflow programming model and a state-of-the-art streaming, data-parallel,
distributed data processor.

In Timely Dataflow’s progress tracking, worker-local and distributed coordination are
intertwined, and the formal model must account for this asymmetry. Individual agents
(operator instances) on a worker generate coordination updates that have to be asynchronously
exchanged with all other workers, and then propagated locally on the dataflow structure to
provide local coordination information to all other operator instances.

This is an additional (worker-local) dimension in the specification when compared to
well-known distributed coordination protocols, such as Paxos [21] and Raft [28], which focus
on the interaction between symmetric communicating parties on different nodes. In contrast
our environment model can be simpler, as progress tracking is designed to handle but not
recover from fail-stop failures or unbounded pauses: upon crashes, unbounded stalls, or reset
of a channel, the system stops without violating safety.

Abadi et al. [4] formalize and prove safety of the distributed exchange component of
progress tracking in the TLA+ Proof System. We present their clocks protocol through the lens
of our Isabelle re-formalization (Section 3) and show that it subtly fails to capture behaviors
supported by Timely Dataflow [26, 27]. We then significantly extend the formalized protocol
(Section 4) to faithfully model Timely Dataflow’s modern reference implementation [1].

The above distributed protocol does not model the dataflow graph, operators, and times-
tamps within a worker. Thus, on its own it is insufficient to ensure that up-to-date frontiers
are delivered to all operator instances. To this end, we formalize and prove the safety of the
local propagation component (Section 5) of progress tracking, which computes and updates
frontiers for all operator instances. Local propagation happens on a single worker, but opera-
tor instances act as independent asynchronous actors. For this reason, we also employ a state
machine model for this component. Along the way, we identify sufficient criteria on dataflow
graphs, that were previously not explicitly (or only partially) formulated for Timely Dataflow.

Finally, we combine the distributed component with local propagation (Section 6) and
formalize the global safety property that connects initial timestamps to their effect on the op-
erator frontier. Specifically, we prove that our combined protocol ensures that frontiers always
constitute safe lower bounds on what timestamps may still appear on the operator inputs.

Related Work

Data management systems verification Timely Dataflow is a system that supports low-
latency, high-throughput data-processing applications. Higher level libraries [24, 25] and
SQL abstractions [2] built on Timely Dataflow support high performance incremental view
maintenance for complex queries over large datasets. Verification and formal methods efforts
in the data management and processing space have focused on SQL and query-language
semantics [6, 11,13] and on query runtimes in database management systems [7, 23].

Distributed systems verification Timely Dataflow is a distributed, concurrent system: our
modeling and proof techniques are based on the widely accepted state machine model and
refinement approach as used, e.g., in the TLA+ Proof System [10] and Ironfleet [16]. Recent
work focuses on proving consistency and safety properties of distributed storage systems [14,
15, 22] and providing tools for the implementation and verification of general distributed
protocols [20,31] leveraging domain-specific languages [30,33] and advanced type systems [17].



M. Brun and S. Decova and A. Lattuada and D. Traytel 10:3

Model of Timely Dataflow Abadi and Isard [3] define abstractly the semantics of a Timely
Dataflow programming model [26]. Our work is complementary; we concretely compute their
could-result-in relation (Section 6) and formally model the implementation’s core component.

2 Timely Dataflow and Progress Tracking

Our formal model follows the progress tracking protocol of the modern Rust implementation
of Timely Dataflow [1]. The protocol has evolved from the one reported as part of the classic
implementation Naiad [26]. Here, we provide an informal overview of the basic notions, for
the purpose of supporting the presentation of our formal model and proofs.

Dataflow graph A Timely Dataflow computation is represented by a graph of operators,
connected by channels. Each worker in the system runs an instance of the entire dataflow
graph. Each instance of an operator is responsible for a subset, or shard, of the data being
processed. Workers run independently and only communicate through reliable message
queues—they act as communicating sequential processes [18]. Each worker alternately
executes the progress tracking protocol and the operator’s processing logic. Figure 1 shows a
Timely Dataflow operator and the related concepts described in this section.

target

target
source

summaries

ports

incoming channel

incoming channel
outgoing channel

Figure 1 A Timely Dataflow operator.

Pointstamps A pointstamp represents a datum at rest at an operator, or in motion on one
of the channels. A pointstamp pl, tq refers to a location l in the dataflow and a timestamp t.
Timestamps encode a semantic (causal) grouping of the data. For example, all data resulting
from a single transaction can be associated with the same timestamp. Timestamps are usually
tuples of positive integers, but can be of any type for which a partial order ⪯ is defined.

Locations and summaries Each operator has an arbitrary number of input and output ports,
which are locations. An operator instance receives new data through its input ports, or target
locations, performs processing, and produces data through its output ports, or source locations.
A dataflow channel is an edge from a source to a target. Internal operator connections are
edges from a target to a source, which are additionally described by one or more summaries:
the minimal increment to timestamps applied to data processed by the operator.

Frontiers Operator instances must be informed of which timestamps they may still receive
from their incoming channels, to determine when they have a complete view of data associated
with a certain timestamp. The progress tracking protocol tracks the system’s pointstamps
and summarizes them to one frontier per operator port. A frontier is a lower bound on the
timestamps that may appear at the operator instance inputs. It is represented by an antichain
F indicating that the operator may still receive any timestamp t for which Dt1 P F. t1 ⪯ t.

Progress tracking Progress tracking computes frontiers in two steps. A distributed compo-
nent exchanges pointstamp changes (Sections 3 and 4) to construct an approximate, conserva-
tive view of all the pointstamps present in the system. Workers use this global view to locally
propagate changes on the dataflow graph (Section 5) and update the frontiers at the operator in-
put ports. The combined protocol (Section 6) asynchronously executes these two components.

ITP 2021



10:4 Verified Progress Tracking for Timely Dataflow

b.1

b.2

b.3

b: labelprop

c.1c.2

c: feedback

a: input

a.1

+(0,1) B

C

A
Figure 2 A timely dataflow that computes weakly connected components.

▶ Running Example (Weakly Connected Components by Propagating Labels). Figure 2 shows
a dataflow that computes weakly connected components (WCC) by assigning integer labels
to vertices in a graph, and propagating the lowest label seen so far by each vertex to all its
neighbors. The input graph is initially sent by operator a as a stream of edges (s,d) with
timestamp (0,0). Each input port has an associated sharding function to determine which
data should be sent to which operator instance: port b.2 shards the incoming edges (s,d) by s.

The input operator a will continue sending additional edges in the graph as they appear,
using increasing timestamps by incrementing one coordinate: (1,0), (2,0), etc. The compu-
tation is tasked with reacting to these changes and performing incremental re-computation to
produce correct output for each of these input graph versions. The first timestamp coordinate
represents logical consistency boundaries for the input and output of the program. We will use
the second timestamp coordinate to track the progress of the unbounded iterative algorithm.

The operator a starts with a pointstamp (a.1, (0,0)) on port a.1, representing its intent
to send data with that timestamp through the connected channel. When it sends messages
on channel A, these are represented by pointstamps on the port b.2 ; e.g., (b.2, (0,0)) for the
initial timestamp (0,0). When it ceases sending data for a certain timestamp, e.g., (0,0), op-
erator a drops the corresponding pointstamp on port a.1. The frontier at b.2 reflects whether
pointstamps with a certain timestamp are present at either a.1 or b.2 : when they both become
absent (when all messages are delivered) each instance of b notices that its frontier has ad-
vanced and determines it has received its entire share of the input (the graph) for a timestamp.

Each instance of b starts with a pointstamp on b.3 at timestamp (0,0); when it has
received its entire share of the input, for each vertex with label x and each of its neighbors
n, it sends (n,x) at timestamp (0,0). This stream then traverses operator c, that increases
the timestamp associated to each message by (0,1), and reaches port b.1, which shards the
incoming tuples (n,x) by n. Operator b inspects the frontier on b.1 to determine when it
has received all messages with timestamp (0,1). These messages left b.3 with timestamp
(0,0). The progress tracking mechanism will correctly report the frontier at b.1 by taking
into consideration the summary between c.1 and c.2.

Operator b collects all label updates from b.1 and, for those vertices that received a value
that is smaller than the current label, it updates internal state and sends a new update via b.3
with timestamp (0,1). This process then repeats with increasing timestamps, (0,2), (0,3),
etc., for each trip around the loop, until ultimately no new update message is generated on
port b.3 by any of the operator instances, for a certain family of timestamps (t1,t2) with
a fixed t1 corresponding to the input version being considered. Operator b determines it has
correctly labeled all connected components for a given t1 when the frontier at b.1 does not
contain a pt1, t2q such that t2 ⪯ the graph’s diameter. In practice, once operator b determines
it has computed the output for a given t1, the operator would also send the output on an
additional outgoing channel to deliver it to the user. Later, operator b continues processing
for further input versions, indicated by increasing t1, with timestamps (t1,0), (t1,1), etc. ◀



M. Brun and S. Decova and A. Lattuada and D. Traytel 10:5

3 The Clocks Protocol

In this section, we present Abadi et al.’s approach to modeling the distributed component
of progress tracking [4], termed the clocks protocol. Instead of showing their TLA+ Proof
System formalization, we present our re-formalization of the protocol in Isabelle. Thereby,
this section serves as an introduction to both the protocol and the relevant Isabelle constructs.

The clocks protocol is a distributed algorithm to track existing pointstamps in a dataflow.
It models a finite set of workers. Each worker stores a (finite) multiset of pointstamps as seen
from its perspective and shares updates to this information with all other workers. The pro-
tocol considers workers as black boxes, i.e., it does not model their dataflow graph, locations,
and timestamps. We extend the protocol to take these components into account in Section 5.

In Isabelle, we use the type variable 'w :: finite to represent workers. We assume that
'w belongs to the finite type class, which assures that 'w’s universe is finite. Similarly, we
model pointstamps abstractly by 'p :: order . The order type class assumes the existence of a
partial order ď :: 'p ñ 'p ñ bool (and the corresponding strict order ă).

We model the protocol as a transition system that acts on configurations given as follows:

record p'w :: finite, 'p :: orderq conf “
rec :: 'p zmset
msg :: 'w ñ 'w ñ 'p zmset list
temp :: 'w ñ 'p zmset
glob :: 'w ñ 'p zmset

Here, rec c denotes the global multiset of pointstamps (or records) that are present in a
system’s configuration c. We use the type 'p zmset of signed multisets [8]. An element
M :: 'p zmset can be thought of as a function of type 'p ñ int, which is non-zero only for
finitely many values. (In contrast, an unsigned multiset M :: 'p mset corresponds to a function
of type 'p ñ nat.) Signed multisets enjoy nice algebraic properties; in particular, they form a
group. This significantly simplifies the reasoning about subtraction. However, rec c will always
store only non-negative pointstamp counts. The other components of a configuration c are

the progress message queues msg c w w1, which denote the progress update messages sent
from worker w to worker w1 (not to be confused with data messages, which are accounted
for in rec c but do not participate in the protocol otherwise);
the temporary changes temp c w in which worker w stores changes to pointstamps that it
might need to communicate to other workers; and
the local approximation glob c w of rec c from the perspective of worker w (we use Abadi
et al. [4]’s slightly misleading term glob for the worker’s local view on the global state).

In contrast to rec, these components may contain a negative count ´i for a pointstamp p,
which denotes that i occurrences of p have been discarded.

The following predicate characterizes the protocol’s initial configurations. We write t#uz

for the empty signed multiset and M#z p for the count of pointstamp p in a signed multiset M.

definition Init :: p'w, 'pq conf ñ bool where
Init c “ p@p. rec c #z p ě 0q ^ p@w w1. msg c w w1 “ r sq ^

p@w. temp c w “ t#uzq ^ p@w. glob c w “ rec cq
In words: all global pointstamp counts in rec must be non-negative and equal to each worker’s
local view glob; all message queues and temporary changes must be empty.

Referencing our WCC example described in Section 2, the clocks protocol is the component
in charge of distributing pointstamp changes to other workers. When one instance of the
input operator a ceases sending data for a certain family of timestamps (t1,0) it drops the
corresponding pointstamp: the clocks protocol is in charge of exchanging this information

ITP 2021



10:6 Verified Progress Tracking for Timely Dataflow

with other workers, so that they can determine when all instances of a have ceased producing
messages for a certain timestamp. This happens for all pointstamp changes in the system,
including pointstamps that represent messages in-flight on channels.

The configurations evolve via one of three actions:
perf_op: A worker may perform an operation that causes a change in pointstamps. Changes

may remove certain pointstamps and add others. They are recorded in rec and temp.
send_upd: A worker may broadcast some of its changes stored in temp to all other workers.
recv_upd: A worker may receive an earlier broadcast and update its local view glob.

Overall, the clocks protocol aims to establish that glob is a safe approximation for rec.
Safe means here that no pointstamp in rec is less than any of glob’s minimal pointstamps.
To achieve this property, the protocol imposes a restriction on which new pointstamps may
be introduced in rec and which progress updates may be broadcast. This restriction is the
uprightness property that ensures that a pointstamp can only be introduced if simultaneously
a smaller (supporting) pointstamp is removed. Formally, a signed multiset of pointstamps
is upright if every positive entry is accompanied by a smaller negative entry:

definition supp :: 'p zmset ñ 'p ñ bool where supp M p “ pDp1 ă p. M #z p1 ă 0q
definition upright :: 'p zmset ñ bool where upright M “ p@p. M #z p ą 0 ÝÑ supp M pq

Abadi et al. [4] additionally require that the pointstamp p1 in supp’s definition satisfies
@p2 ď p1. M #z p2 ď 0. The two variants of upright are equivalent in our formalization
because signed multisets are finite and thus minimal elements exist even without ď being
well-founded. The extra assumption on p1 is occasionally useful in proofs.

In practice, uprightness means that operators are only allowed to transition to pointstamps
forward in time, and cannot re-introduce pointstamps that they relinquished. This is necessary
to ensure that the frontiers always move to later timestamps and remain a conservative approx-
imation of the pointstamps still present in the system. An advancing frontier triggers computa-
tion in some of the dataflow operators, for example to output the result of a time-based aggre-
gation: this should only happen once all the relevant incoming data has been processed. This
is the intuition behind the safety property of the protocol, Safe, discussed later in this section.

Figure 3 defines the three protocol actions formally as transition relations between an old
configuration c and a new configuration c1 along with the definition of the overall transition
relation Next, which in addition to performing one of the actions may stutter, i.e., leave c1 “ c
unchanged. The three actions take further parameters as arguments, which we explain next.

The action perf_op is parameterized by a worker w and two (unsigned) multisets ∆neg and
∆pos, corresponding to negative and positive pointstamp changes. The action’s overall effect
on the pointstamps is thus ∆ “ ∆pos´∆neg. Here and elsewhere, subtraction expects signed
multisets as arguments and we omit the type conversions from unsigned to signed multisets
(which are included in our Isabelle formalization). The action is only enabled if its parameters
satisfy two requirements. First, only pointstamps present in rec may be dropped, and thus the
counts from ∆neg must be bounded by the ones from rec. (Arguably, accessing rec is problem-
atic for distributed workers. We rectify this modeling deficiency in Section 4.) Second, ∆ must
be upright, which ensures that we will never introduce a pointstamp that is lower than any
pointstamp in rec. If these requirements are met, the action can be performed and will update
both rec and temp with ∆ (expressed using Isabelle’s record and function update syntax).

The action send_upd is parameterized by a worker (sender w) and a set of pointstamps
P, the outstanding changes to which, called γ, we want to broadcast. The key requirement
is that the still unsent changes remain upright. Note that it is always possible to send all
changes or all positive changes in temp, because any multiset without a positive change is



M. Brun and S. Decova and A. Lattuada and D. Traytel 10:7

definition perf_op ::'w ñ 'p mset ñ 'p mset ñ p'w, 'pq conf ñ p'w, 'pq conf ñ bool where
perf_op w ∆neg ∆pos c c1 “ let ∆ “ ∆pos´∆neg in p@p. ∆neg #p ď rec c#z pq^upright ∆^

c1 “ cLrec “ rec c`∆, temp “ ptemp cqpw :“ temp c w`∆qM
definition send_upd :: 'w ñ 'p set ñ p'w, 'pq conf ñ p'w, 'pq conf ñ bool where

send_upd w P c c1 “ let γ “ t#p P#z temp c w. p P P#u in
γ ‰ t#uz ^ upright ptemp c w´ γq ^
c1 “ cLmsg “ pmsg cqpw :“ λw1. msg c w w1 ¨ rγsq, temp “ ptemp cqpw :“ temp c w´ γqM

definition recv_upd :: 'w ñ 'w ñ p'w, 'pq conf ñ p'w, 'pq conf ñ bool where
recv_upd w w1 c c1 “ msg c w w1 ‰ rs ^

c1 “ cLmsg “ pmsg cqpw :“ pmsg c wqpw1 :“ tl pmsg c w w1qqq,

glob “ pglob cqpw1 :“ glob c w1 ` hd pmsg c w w1qqM
definition Next :: p'w, 'pq conf ñ p'w, 'pq conf ñ bool where

Next c c1 “ pc “ c1q _ pDw ∆neg ∆pos. perf_op w ∆neg ∆pos c c1q _

pDw P. send_upd w P c c1q _ pDw w1. recv_upd w w1 c c1q

Figure 3 Transition relation of Abadi et al.’s clocks protocol

upright. The operation enqueues γ in all message queues that have w as the sender. We
model first-in-first-out queues as lists, where enqueuing means appending at the end (_ ¨ r_s).

Finally, the action recv_upd is parameterized by two workers (sender w and receiver w1).
Given a non-empty queue msg c w w1, the action dequeues the first message (head hd gives
the message, tail tl the queue’s remainder) and adds it to the receiver’s glob.

An execution of the clocks protocol is an infinite sequence of configurations. Infinite
sequences of elements of type 'a are expressed in Isabelle using the coinductive datatype
(short codatatype) of streams defined as codatatype 'a stream “ Stream 'a p'a streamq.
We can inspect a stream’s head and tail using the functions shd :: 'a stream ñ 'a and
stl :: 'a stream ñ 'a stream. Valid protocol executions satisfy the predicate Spec, i.e., they
start in an initial configuration and all neighboring configurations are related by Next:

definition Spec :: p'w, 'pq conf stream ñ bool where
Spec s “ now Init s^ alw prelates Nextq s

The operators now and relates lift unary and binary predicates over configurations to exe-
cutions by evaluating them on the first one or two configurations respectively: now P s “
P pshd sq and relates R s “ R pshd sq pshd pstl sqq. The coinductive operator alw resembles
a temporal logic operator: alw P s holds if P holds for all suffixes of s.

coinductive alw :: p'a stream ñ boolq ñ 'a stream ñ bool where
P s ÝÑ alw P pstl sq ÝÑ alw P s

We use the operators now, relates, and alw not only to specify valid execution, but also
to state the main safety property. Moreover, we use the predicate vacant to express that a
pointstamp (and all smaller pointstamps) are not present in a signed multiset:

definition vacant :: 'p zmset ñ 'p ñ bool where vacant M p “ p@p1 ď p. M #z p1 “ 0q

Safety states that if any worker’s glob becomes vacant up to some pointstamp, then that
pointstamp and any lesser ones do not exist in the system, i.e., are not present in rec (and will
remain so). Thus, safety allows workers to learn locally, via glob, something about the system’s
global state rec, namely that they will never encounter certain pointstamps again. Formally:

definition Safe :: p'w, 'pq conf stream ñ bool where
Safe s “ p@w p. now pλc. vacant pglob c wq pq s ÝÑ alw pnow pλc. vacant prec cq pq sqq

lemma safe: Spec s ÝÑ alw Safe s

ITP 2021



10:8 Verified Progress Tracking for Timely Dataflow

Our extended report [9] provides informal proof sketches for this and other safety properties.
Overall, we have replicated the formalization of Abadi et al.’s clocks protocol and the proof

of its safety. Their protocol accurately models the implementation of the progress tracking pro-
tocol’s distributed component in Timely Dataflow’s original implementation Naiad with one
subtle exception. The Naiad API (OnNotify, SendBy) allows an operator to repeatedly send
data messages through its output port, which generates pointstamps at the receiver, without
requiring that a pointstamp on the output port is decremented. This can result in a perf_op
transition that is not upright. Additionally, the modern reference implementation of Timely
Dataflow in Rust is more expressive than Naiad, and permits multiple operations that result in
non-upright changes. We address and correct this limitation of the clocks protocol in Section 4.

One example of an operator that expresses behavior that results in non-upright changes
is the input operator a in the WCC example. This operator may be reading data from an
external source, and as soon as it receives new edges, it can forward them with the current
pointstamp (a.1, (t1,0)). This operator may be invoked multiple times, and perform this
action repeatedly, until it determines from the external source that it should mark a certain
timestamp as complete by dropping the pointstamp. All of these intermediate actions that
send data at (t1,0) are not upright, as sending messages creates new pointstamps on the
message targets, without dropping a smaller pointstamp that can support the postive change.

4 Exchanging Progress

As outlined in the previous section, the clocks protocol is not flexible enough to capture
executions with non-upright changes, which are desired and supported by concrete implemen-
tations of Timely Dataflow. At the same time, the protocol captures behaviors that are not
reasonable in practice. Specifically, the clocks protocol does not separate the worker-local
state from the system’s global state. The perf_op transition, which is meant to be executed
by a single worker, uses the global state to check whether the transition is enabled and
simultaneously updates the global state rec as part of the transition. In particular, a single
perf_op transition allows a worker to drop a pointstamp that in the real system “belongs”
to a different worker w and simultaneously consistently updates w’s state. In concrete
implementations of Timely Dataflow, workers execute perf_op’s asynchronously, and thus
can only base the transition on information that is locally available to them.

Our modified model of the protocol, called exchange, resolves both issues. As the first step,
we split the rec field into worker-local signed multisets caps of pointstamps, which we call
capabilities as they indicate the possibility for the respective worker to emit these pointstamps.
Workers may transfer capabilities to other workers. To do so, they asynchronously send
capabilities as data messages to a central multiset data of pairs of workers (receivers) and
pointstamps. We arrive at the following updated type of configurations:

record p'w :: finite, 'p :: orderq conf “
caps :: 'w ñ 'p zmset
data :: p'w ˆ 'pq mset
msg :: 'w ñ 'w ñ 'p zmset list
temp :: 'w ñ 'p zmset
glob :: 'w ñ 'p zmset

Including this fine-grained view on pointstamps will allow workers to make transitions based
on worker-local information. The entirety of the system’s pointstamps, rec, which was
previously part of the configuration and which the protocol aims to track, can be computed
as the sum of all the workers’ capabilities and data’s in-flight pointstamps.



M. Brun and S. Decova and A. Lattuada and D. Traytel 10:9

definition recv_cap :: 'w ñ 'p ñ p'w, 'pq conf ñ p'w, 'pq conf ñ bool where
recv_cap w p c c1 “ pw, pq P# data c^

c1 “ cLcaps “ pcaps cqpw :“ caps c w` t#p#uzq, data “ data c´ t#pw, pq#uM
definition perf_op :: 'w ñ 'p mset ñ p'w ˆ 'pq mset ñ 'p mset ñ

p'w, 'pq conf ñ p'w, 'pq conf ñ bool where
perf_op w ∆neg ∆data ∆self c c1 “

p∆data ‰ t#u _∆self ´∆neg ‰ t#uzq ^ p@p. ∆neg # p ď caps c w #z pq ^
p@pw1, pq P# ∆data. Dp1 ă p. caps c w #z p1 ą 0q ^
p@p P# ∆self . Dp1 ď p. caps c w #z p1 ą 0q ^
c1 “ cLcaps “ pcaps cqpw :“ caps c w`∆self ´∆negq, data “ data c`∆data,

temp “ ptemp cqpw :“ temp c w` psnd ‘# ∆data `∆self ´∆negqqM

definition send_upd :: 'w ñ 'p set ñ p'w, 'pq conf ñ p'w, 'pq conf ñ bool where
send_upd w P c c1 “ let γ “ t#p P#z temp c w. p P P#u in
γ ‰ t#uz ^ justified pcaps c wq ptemp c w´ γq ^
c1 “ cLmsg “ pmsg cqpw :“ λw1. msg c w w1 ¨ rγsq, temp “ ptemp cqpw :“ temp c w´ γqM

definition recv_upd :: 'w ñ 'w ñ p'w, 'pq conf ñ p'w, 'pq conf ñ bool where
recv_upd w w1 c c1 “ msg c w w1 ‰ rs ^

c1 “ cLmsg “ pmsg cqpw :“ pmsg c wqpw1 :“ tl pmsg c w w1qqq,

glob “ pglob cqpw1 :“ glob c w1 ` hd pmsg c w w1qqM
definition Next :: p'w, 'pq conf ñ p'w, 'pq conf ñ bool where

Next c c1 “ pc “ c1q _ pDw p. recv_cap w p c c1q _

pDw ∆neg ∆data ∆self . perf_op w ∆neg ∆data ∆self c c1q _

pDw P. send_upd w P c c1q _ pDw w1. recv_upd w w1 c c1q

Figure 4 Transition relation of the exchange protocol

definition rec :: p'w, 'pq conf ñ 'p zmset where rec c “ p
ÿ

w
caps c wq ` snd ‘# data c

Here, the infix operator ‘# denotes the image of a function over a multiset with resulting
counts given by p f ‘# Mq# x “

ř

yPtyP#M| f y“xu M # y.
The exchange protocol’s initial state allows workers to start with some positive capabilities.

Each worker’s glob must correctly reflect all initially present capabilities.

definition Init :: p'w, 'pq conf ñ bool where
Init c “ p@w p. caps c w #z p ě 0q ^ data c “ t#u ^
p@w w1. msg c w w1 “ r sq ^ p@w. temp c w “ t#uzq ^ p@w. glob c w “ rec cq

The transition relation of the exchange protocol, shown in Figure 4, is similar to that of the
clocks protocol. We focus on the differences between the two protocols. First, the exchange
protocol has an additional transition recv_cap to receive a previously sent capability. The
transition removes a pointstamp from data and adds it to the receiving worker’s capabilities.

The perf_op transition resembles its homonymous counterpart from the clocks protocol.
Yet, the information flow is more fine grained. In particular, the transition is parameterized
by a worker w and three multisets of pointstamps. As in the clocks protocol, the multiset
∆neg represents negative changes to pointstamps. Only pointstamps for which w owns a
capability in caps may be dropped in this way. The other two multisets ∆data and ∆self
represent positive changes. The multiset ∆data represents positive changes to other workers’
capabilities—the receiving worker is stored in ∆data. These changes are not immediately
applied to the other worker’s caps, but are sent via the data field. The multiset ∆self
represents positive changes to w’s capabilities, which are applied immediately applied to

ITP 2021



10:10 Verified Progress Tracking for Timely Dataflow

w’s caps. The separation between ∆data and ∆self is motivated by different requirements
on these positive changes to pointstamps that we prove to be sufficient for safety. To send
a positive capability to another worker, w is required to hold a positive capability for a
strictly smaller pointstamp. In contrast, w can create a new capability for itself, if it is
already holding a capability for the very same (or a smaller) pointstamp. In other words,
w can arbitrarily increase the multiset counts of its own capabilities. Note that, unlike in the
clocks protocol, there is no requirement of uprightness and, in fact, workers are not required
to perform negative changes at all. Of course, it is useful for workers to perform negative
changes every now and then so that the overall system can make progress.

The first condition in perf_op, namely ∆data ‰ t#u _∆self ´∆neg ‰ t#uz, ensures that
the transition changes the configuration. In the exchange protocol, we also include explicit
stutter steps in the Next relation (c “ c1) but avoid them in the individual transitions.

Sending (send_upd) and receiving (recv_upd) progress updates works precisely as in the
clocks protocol except for the condition on what remains in the sender’s temp highlighted
in gray in Figure 4. Because we allowed perf_op to perform non-upright changes, we can
no longer expect the contents of temp to be upright. Instead, we use the predicate justified,
which offers three possible justifications for positive entries in the signed multiset M (in
contrast to upright’s sole justification of being supported in M):

definition justified :: 'p zmset ñ 'p zmset ñ bool where
justified C M “ p@p. M#z p ą 0 ÝÑ supp M p_pDp1 ă p. C#z p1 ą 0q_M#z p ă C#z pq

Thus, a positive count for pointstamp p in M may be either
supported in M, i.e., in particular every upright change is justified, or
justified by a smaller pointstamp in C, which we think of as the sender’s capabilities, or
justified by p in C, with the requirement that p’s count in M is smaller than p’s count in C.

The definitions of valid executions Spec and the safety predicate Safe are unchanged
compared to the clocks protocol. Also, we prove precisely the same safety property safe
following a similar proof structure.

We also derive the following additional property of glob, which shows that any in-flight
progress updates to a pointstamp p, positive or negative, have a corresponding positive count
for some pointstamp less or equal than p in the receiver’s glob.

lemma glob: Spec s ÝÑ alw pnow pλc. @w w1 p.
pDM P set pmsg c w w1q. p P#z Mq ÝÑ pDp1 ď p. glob c w1 #z p1 ą 0qqq s

5 Locally Propagating Progress

The previous sections focused on the progress-relevant communication between workers and
abstracted over the actual dataflow that is evaluated by each worker. Next, we refine this
abstraction: we model the actual dataflow graph as a weighted directed graph with vertices
representing operator input and output ports, termed locations. We do not distinguish
between source and target locations and thus also not between internal and dataflow edges.
Each weight denotes a minimum increment that is performed to a timestamp when it con-
ceptually travels along the corresponding edge from one location to another. On a single
worker, progress updates can be communicated locally, so that every operator learns which
timestamps it may still receive in the future. We formalize Timely Dataflow’s approach for
this local communication: the algorithm gradually propagates learned pointstamp changes
along dataflow edges to update downstream frontiers.



M. Brun and S. Decova and A. Lattuada and D. Traytel 10:11

locale graph “
fixes weights :: p'vtx :: finiteq ñ 'vtx ñ p'lbl :: torder , monoid_adduq antichain
assumes pl :: 'lblq ě 0 and pl1 :: 'lblq ď l3 ÝÑ l2 ď l4 ÝÑ l1 ` l2 ď l3 ` l4
and weights l l “ tu

locale dataflow “ graph summary
for summary :: p'l :: finiteq ñ 'l ñ p'sum :: torder , monoid_adduq antichain `
fixes h :: p't :: orderq ñ 'sum ñ 't
assumes th 0 “ t and pth sqh s1 “ thps` s1q and t ď t1 ÝÑ s ď s1 ÝÑ th s ď t1h s1

and path l l xs ÝÑ xs ‰ r s ÝÑ t ă t h p
ÿ

xsq

Figure 5 Locales for graphs and dataflows

Figure 5 details our modeling of graphs and dataflows, which uses locales [5] to capture
our abstract assumptions on dataflows and timestamps. A locale lets us fix parameters (types
and constants) and assume properties about them. In our setting, a weighted directed graph
is given by a finite (class finite) type 'vtx of vertices and a weights function that assigns each
pair of vertices a weight. To express weights, we fix a type of labels 'lbl, which we assume to
be partially ordered (class order) and to form a monoid (class monoid_add) with the monoid
operation ` and the neutral element 0. We assume that labels are non-negative and that
` on labels is monotone with respect to the partial order ď. A weight is then an antichain
of labels, that is a set of incomparable (with respect to ď) labels, which we model as follows:

typedef p't :: orderq antichain “ tA :: 't set. finite A^ p@a P A. @b P A. a ­ă b^ b ­ă aqu

We use standard set notation for antichains and omit type conversions from antichains to
(signed) multisets. The empty antichain tu is a valid weight, too, in which case we think
of the involved vertices as not being connected to each other. Thus, the graph locale’s final
assumption expresses the non-existence of self-edges in a graph.

Within the graph locale, we can define the predicate path :: 'vtx ñ 'vtx ñ 'lbl list ñ bool.
Intuitively, path v w xs expresses that the list of labels xs is a valid path from v to w (the
empty list being a valid path only if v “ w and any weight l P weights u v can extend a valid
path from v to w to a path from u to w). We omit path’s formal straightforward inductive
definition. Note that even though self-edges are disallowed, cycles in graphs are possible
(and desired). In other words, path v v xs can be true for a non-empty list xs.

The second locale, dataflow, has two purposes. First, it refines the generic graph terminol-
ogy from vertices and labels to locations ('l) and summaries ('sum), which is the corresponding
terminology used in Timely Dataflow. Second, it introduces the type for timestamps 't,
which is partially ordered (class order) and an operation h (read as “results in”) that applies
a summary to a timestamp to obtain a new timestamp. We chose the asymmetric symbol for
the operation to remind the reader that its two arguments have different types, timestamps
and summaries. The locale requires the operation h to be well-behaved with respect to the
available vocabulary on summaries (0, `, and ď). Moreover, it requires that proper cycles xs
have a path summary

ř

xs (defined by iterating `) that strictly increments any timestamp t.
Now, consider a function P :: 'l ñ 't zmset that assigns each location a set of timestamps

that it currently holds. We are interested in computing a lower bound of timestamps (with
respect to the order ď) that may arrive at any location for a given P. Timely Dataflow calls
antichains that constitute such a lower bound frontiers. Formally, a frontier is the set of
minimal incomparable elements that have a positive count in a signed multiset of timestamps.

definition antichain_of :: 't set ñ 't set where antichain_of A “ tx P A. ␣Dy P A. y ă xu
lift_definition frontier :: 't zmset ñ 't antichain is λM. antichain_of tt. M #z t ą 0u

ITP 2021



10:12 Verified Progress Tracking for Timely Dataflow

Our frontier of interest, called the implied frontier, at location l can be computed directly
for a given function P by adding, for every location l 1, every (minimal) possible path summary
between l 1 and l, denoted by the antichain path_summary l 1 l, to every timestamp present at
l 1 and computing the frontier of the result. Formally, we first lift h to signed multisets and
antichains. Then, we use the lifted operator

È

to define the implied frontier.

definition
è

:: 't zmset ñ 'sum antichain ñ 't zmset where
M

è

A “
ÿ

sPA
pλt. t h sq ‘#z M

definition implied_frontier :: p'l ñ 't zmsetq ñ 'l ñ 't antichain where
implied_frontier P l “ frontier p

ÿ

l1
pposz pP l1q

è

path_summary l1 lqq

Above and elsewhere, given a signed multiset M, we write f ‘#z M for the image (as a signed
multiset) of f over M and posz M for the signed multiset of M’s positive entries.

Computing the implied frontier for each location in this way (quadratic in the number of
locations) would be too inefficient, especially because we want to frequently supply operators
with up-to-date progress information. Instead, we follow the optimized approach implemented
in Timely Dataflow: after performing some work and making some progress, operators start
pushing relevant updates only to their immediate successors in the dataflow graph. The
information gradually propagates and eventually converges to the implied frontier. Despite
this local propagation not being a distributed protocol as such, we formalize it for a fixed
dataflow in a similar state-machine style as the earlier exchange protocol.

Local propagation uses a configuration consisting of three signed multiset components.

record p'l :: finite, 't :: tmonoid_add , orderuq conf “
pts :: 'l ñ 't zmset
imp :: 'l ñ 't zmset
work :: 'l ñ 't zmset

Following Timely Dataflow terminology, pointstamps pts are the present timestamps grouped
by location (the P function from above). The implications imp are the output of the local prop-
agation and contain an over-approximation of the implied frontier (as we will show). Finally,
the worklist work is an auxiliary data structure to store not-yet propagated timestamps.

Initially, all implications are empty and worklists consist of the frontiers of the pointstamps.

definition Init :: p'l , 'tq conf ñ bool where
Init c “ p@l . imp c l “ t#uz ^ work c l “ frontier ppts c lqq

The propagation proceeds by executing one of two actions shown in Figure 6. The action
change_multiplicity constitutes the algorithm’s information input: The system may have
changed the multiplicity of some timestamp t at location l and can use this action to notify
the propagation algorithm of the change. The change value n is required to be non-zero and
the affected timestamp t must be witnessed by some timestamp in the implications. Note
that the latter requirement prohibits executing this action in the initial state. The action
updates the pointstamps according to the declared change. It also updates the worklist,
but only if the update of the pointstamps affects the frontier of the pointstamps at l and
moreover the worklists are updated merely by the change to the frontier.

The second action, propagate, applies the information for the timestamp t stored in the
worklist at a given location l, to the location’s implications (thus potentially enabling the first
action). It also updates the worklists at the location’s immediate successors in the dataflow
graph. Again the worklist updates are filtered by whether they affect the frontier (of the
implications) and are adjusted by the summary between l and each successor. Importantly,



M. Brun and S. Decova and A. Lattuada and D. Traytel 10:13

definition change_multiplicity :: 'l ñ 't ñ int ñ p'l , 'tq conf ñ p'l , 'tq conf ñ bool where
change_multiplicity l t n c c1 “ n ‰ 0^ pDt1 P frontier pimplications c lq. t1 ď tq ^

c1 “ cLpts “ ppts cqpl :“ pts c l ` replicate n tq,
work “ pwork cqpl :“ work c l ` frontier ppts c1 lq ´ frontier ppts c lqqM

definition propagate :: 'l ñ 't ñ p'l , 'tq conf ñ p'l , 'tq conf ñ bool where
propagate l t c c1 “ t P#z work c l ^ p@l 1. @t1 P#z work c l 1. ␣t1 ă tq ^

c1 “ cLimp “ pimp cqpl :“ imp c l ` replicate pwork c l #z tq t,
work “ λl 1. if l “ l 1 then t#t1 P#z work c l . t1 ‰ t#u

else work c l 1 ` ppfrontier pimp c1 lq ´ frontier pimp c lqq
è

summary l l 1qM

definition Next :: p'l , 'tq conf ñ p'l , 'tq conf ñ bool where
Next c c1 “ pc “ c1q _ pDl t n. change_multiplicity l t n c c1q _ pDl t. propagate l t c c1q

Figure 6 Transition relation of the local progress propagation

only minimal timestamps (with respect to timestamps in worklists at all locations) may be
propagated, which ensures that any timestamp will eventually disappear from all worklists.

The overall transition relation Next allows us to choose between these two actions and a
stutter step. Together with Init, it gives rise to the predicate describing valid executions in
the standard way: Spec s “ now Init s^ alw prelates Nextq s.

We show that valid executions satisfy a safety invariant. Ideally, we would like to show that
for any t with a positive count in pts at location l and for any path summary s between l and
some location l1, there is a timestamp in the (frontier of the) implications at l1 that is less than
or equal to th s. In other words, the location l1 is aware that it may still encounter timestamp
t h s. Stated as above, the invariant does not hold, due to the not-yet-propagated progress
information stored in the worklists. If some timestamp, however, does not occur in any worklist
(formalized by the below work_vacant predicate), we obtain our desired invariant Safe.

definition work_vacant :: p'l , 'tq conf ñ 't ñ bool where
work_vacant c t “ p@l l1 s t1. t1 P#z work c l ÝÑ s P path_summary l l1 ÝÑ t1 h s ę tq

definition Safe :: p'l , 'tq conf stream ñ bool where
Safe c “ p@l l1 t s. pts c l #z t ą 0^ s P path_summary l l1 ^ work_vacant c pt h sq ÝÑ
pDt1 P frontier pimp c l1q. t1 ď t h sqq

lemma safe: Spec s ÝÑ alw pnow Safeq s

In our running WCC example, Safe is for example necessary to determine once operator b
has received all incoming updates for a certain round of label propagation, which is encoded
as a timestamp (t1,t2). If a pointstamp at port b.3 was not correctly reflected in the frontier
at b.1 the operator may incorrectly determine that it has seen all incoming labels for a
certain graph node and proceed to the next round of propagation. Safe states, that this
cannot happen and all pointstamps are correctly reflected in relevant downstream frontiers.

The safety proof relies on two auxiliary invariants. First, implications have only positive
entries. Second, the sum of the implication and the worklist at a given location l is equal to the
sum of the frontier of the pointstamps at l and the sum of all frontiers of the implications of
all immediate predecessor locations l1 (adjusted by the corresponding summary summary l1 l).

While the above safety property is sufficient to prove safety of the combination of the
local propagation and the exchange protocol in the next section, we also establish that the
computed frontier of the implications converges to the implied frontier. Specifically, the two
frontiers coincide for timestamps which are not contained in any of the worklists.

lemma implied_frontier: Spec s ÝÑ alw pnow pλc. work_vacant c t ÝÑ
p@l. t P frontier pimp c lq ÐÑ t P implied_frontier ppts cq lqqq s

ITP 2021



10:14 Verified Progress Tracking for Timely Dataflow

6 Progress Tracking

We are now ready to combine the two parts presented so far: the between-worker exchange
of progress updates (Section 4) and the worker-local progress propagation (Section 5). The
combined protocol takes pointstamp changes and determines per-location frontiers at each
operator on each worker. It operates on configurations consisting of a single exchange protocol
configuration (referred to with the prefix E) and for each worker a local propagation configura-
tion (prefix P) and a Boolean flag indicating whether the worker has been properly initialized.

record p'w :: finite, 'l :: finite, 't :: tmonoid_add , orderuq conf “
exch :: p'w, 'l ˆ 'tq E .conf
prop :: 'w ñ p'l , 'tq P .conf
init :: 'w ñ bool

As pointstamps in the exchange protocol, we use pairs of locations and timestamps. To order
pointstamps, we use the following could-result-in relation, inspired by Abadi and Isard [3].

definition ďcri where pl, tq ďcri pl1, t1q “ pDs P path_summary l l1. t h s ď t1q

As required by the exchange protocol, this definition yields a partial order. In particular,
antisymmetry follows from the assumption that proper cycles have a non-zero summary and
transitivity relies on the operation h being monotone. Intuitively, ďcri captures a notion of
reachability in the dataflow graph: as timestamp t traverses the graph starting at location l, it
could arrive at location l1, being incremented to timestamp t1. (In Timely Dataflow, an edge’s
summary represents the minimal increment to a timestamp when it traverses that edge.)

In an initial combined configuration, all workers are not initialized and all involved
configurations are initial. Moreover, the local propagation’s pointstamps coincide with
exchange protocol’s glob, which is kept invariant in the combined protocol.

definition Init :: p'w, 'l , 'tq conf ñ bool where
Init c “ p@w. init c w “ Falseq ^ E.Init pexch cq ^ p@w. P.Init pprop c wqq ^

p@w l t. P.pts pprop c wq l #z t “ E.glob pexch cq w #z pl, tqq

Figure 7 shows the combined protocol’s transition relation Next. Most actions have
identical names as the exchange protocol’s actions and they mostly perform the correspond-
ing actions on the exchange part of the configuration. In addition, the recv_upd action
also performs several change_multiplicity local propagation actions: the receiver updates
the state of its local propagation configuration for all received timestamp updates. The
action propagate does not have a counterpart in the exchange protocol. It iterates, using
the while_option combinator from Isabelle’s library, propagation on a single worker until
all worklists are empty. The term while_option b c s repeatedly applies c starting from the
initial state s, until the predicate b is satisfied. Overall, it evaluates to Some s1 satisfying
␣b s1 and s1 “ c p¨ ¨ ¨ pc sqq with the least possible number of repetitions of c and to None if no
such state exists. Thus, it is only possible to take the propagate action, if the repeated prop-
agation terminates for the considered configuration. We believe that repeated propagation
terminates for any configuration, but we do not prove this non-obvious1 fact formally. Timely
Dataflow also iterates propagation until all worklists of a worker become empty. This gives us
additional empirical evidence that the iteration terminates on practical dataflows. Moreover,

1 Because propagation must operate on a globally minimal timestamp and because loops in the dataflow
graph have a non-zero summary, repeated propagation will eventually forever remove any timestamp
from any worklist. However, it is not as obvious why it eventually will stop introducing larger and
larger timestamps in worklists. The termination argument must rely on the fact that only timestamps
that modify the frontier of the implications are ever added to worklists.



M. Brun and S. Decova and A. Lattuada and D. Traytel 10:15

definition recv_cap :: 'w ñ 'l ˆ 't ñ p'w, 'l , 'tq conf ñ p'w, 'l , 'tq conf ñ bool where
recv_cap w p c c1 “ E.recv_cap w p pexch cq pexch c1q ^ prop c1 “ prop c^ init c1 “ init c

definition perf_op :: 'w ñ p'l ˆ 'tq mset ñ p'w ˆ p'l ˆ 'tqq mset ñ p'l ˆ 'tq mset ñ
p'w, 'l , 'tq conf ñ p'w, 'l , 'tq conf ñ bool where

perf_op w ∆neg ∆data ∆self c c1 “ E.perf_op w ∆neg ∆data ∆self pexch cq pexch c1q ^

prop c1 “ prop c^ init c1 “ init c

definition send_upd :: 'w ñ p'l ˆ 'tq set ñ p'w, 'l , 'tq conf ñ p'w, 'l , 'tq conf ñ bool where
send_upd w P c c1 “ E.send_upd pexch cq pexch c1q w P^ prop c1 “ prop c^ init c1 “ init c

definition cm_all :: p'l , 'tq P .conf ñ p'l ˆ 'tq zmset ñ p'l , 'tq P .conf where
cm_all c ∆ “ Set.fold pλpl, tq c. SOME c1. P.change_multiplicity c c1 l t p∆ #z pl, tqqq c
tpl, tq. pl, tq P#z ∆u

definition recv_upd :: 'w ñ 'w ñ p'w, 'l , 'tq conf ñ p'w, 'l , 'tq conf ñ bool where
recv_upd w w1 c c1 “ init c w1 ^ E.recv_upd w t pexch cq pexch c1q ^

prop c1 “ pprop cqpw1 :“ cm_all pprop c w1q phd pE.msg pexch cqqqq ^ init c1 “ init c

definition propagate :: 'w ñ p'w, 'l , 'tq conf ñ p'w, 'l , 'tq conf ñ bool where
propagate w c c1 “ exch c1 “ exch c^ init c1 “ pinit cqpw :“ Trueq ^
pSome ˝ prop c1q “ pSome ˝ prop cqpw :“ while_option
pλc. Dl. P.work c l ‰ t#uzq pλc. SOME c1. Dl t. P.propagate l t c c1q pprop c wqq

definition Next :: p'w, 'l , 'tq conf ñ p'w, 'l , 'tq conf ñ bool where
Next c c1 “ pc “ c1q _ pDw p. recv_cap w p c c1q _

pDw ∆neg ∆data ∆self . perf_op w ∆neg ∆data ∆self c c1q _

pDw P. send_upd w P c c1q _ pDw w1. recv_upd w w1 c c1q _ pDw. propagate w c c1q

Figure 7 Transition relation of the combined progress tracker

even if the iteration were to not terminate for some worker on some dataflow (both in Timely
Dataflow and in our model), our combined protocol can faithfully capture this behavior by
not executing the propagate action, but also not any other action involving the looping worker,
thus retaining safety for the rest of the workers. Finally, any worker that has completed at
least one propagation action is considered to be initialized (by setting its init flag to True).

The Init predicate and the Next relation give rise to the familiar specification of valid
executions Spec s “ now Init s^ alw prelates Nextq s. Safety of the combined protocol can be
described informally as follows: Every initialized worker w has some evidence for the existence
of a timestamp t at location l at any worker w1 in the frontier of its (i.e., w’s) implications at all
locations l1 reachable from l. Formally, E.rec contains the timestamps that exist in the system:

definition Safe :: p'w, 'l , 'tq conf stream ñ bool where
Safe c “ p@w l l1 t s. init c w^ E.rec pexch cq#z pl, tq ą 0^ s P path_summary l l1 ÝÑ

pDt1 P frontier pP.imp pprop c wq l1q. t1 ď t h sq

Our main formalized result is the statement that the above predicate is an invariant.

lemma safe: Spec s ÝÑ alw pnow Safeq s

In the combined progress tracking protocol, safety guarantees that if a pointstamp is
present at an operator’s port, it is correctly reflected at every downstream port. In the
WCC example, when deployed on two workers, each operator is instantiated twice, once on
each worker. If a pointstamp (b.3, (3,0)) is present on port b.3 of one of the instances of
operator b, the frontier at c.1 on all workers must contain a t such that t ⪯ p3, 0q. Due to the
summary between c.1 and c.2, frontiers at c.2 and b.1 must contain a t such that t ⪯ p3, 1q.
As an example, this ensures that operator b waits for each of its instances to complete the
first round propagation of all labels before it chooses the lowest label for the next round.

ITP 2021



10:16 Verified Progress Tracking for Timely Dataflow

7 Discussion

We have presented an Isabelle/HOL formalization of Timely Dataflow’s progress tracking
protocol, including the verification of its safety. Compared to an earlier formalization by
Abadi et al. [4], our protocol is both more general, which allows it to capture behaviors
present in the implementations of Timely Dataflow and absent in Abadi et al.’s model, and
more detailed in that it explicitly models the local propagation of progress information.

Our formalization spans about 7 000 lines of Isabelle definitions and proofs. These are
roughly distributed as follows over the components we presented: basic properties of graphs
and signed multisets (1 000), exchange protocol (3 100), local propagation (1 700), combined
protocol (1 200). This is comparable in size to the TLA+ Proof System formalization by Abadi
et al., even though we formalized a significantly more detailed, complex, and realistic variant of
the progress tracking protocol. Ground to this claim is the fact that we had actually started our
formalization by porting significant parts of the TLA+ Proof System formalization to Isabelle.
We completed the proofs of their two main safety statement within one person-week in about
1 000 lines of Isabelle (not included above). Our use of Isabelle’s library for linear temporal
logic on streams (in particular, the coinductive predicate alw) allowed us to copy directly a vast
majority of the TLA+ definitions. Additionally, Isabelle’s mature proof automation allowed us
to apply a fairly mechanical porting process to many of the proofs. Most ported lemmas could
be proved either directly by Sledgehammer [29] or by sketching an Isar [32] proof skeleton
of the main proof steps and discharging most of the resulting subgoals with Sledgehammer.

In the subsequent development of the combined protocol, Isabelle’s locales [5] were an
important asset. By confining the exchange protocol and the local propagation each to their
own local assumptions, we were able to develop them in parallel and in their full generality.
Thus, we obtain formal models not only of the combined protocol itself but also of these two
subsystems in a generality that goes beyond what is needed for the concrete combined instance.
For example, although the combined protocol uses the could-result-in order, the exchange
protocol works for any partial order on pointstamps. Moreover, the combined protocol always
propagates until all worklists are empty, even though the local propagation’s safety supports
small-step propagation, resulting in a more fine-grained safety property via work_vacant.

In our formalization, we make extensive use of signed multisets [8]. The alternative (used in
the TLA+ Proof System formalization), would be to use integer-valued functions instead. The
signed multiset type additionally captures a finite domain assumption, which it was convenient
not to carry around explicitly and in particular simplified reasoning about summations. The
expected downside of having separate types for function-like (mset) and set-like (antichain)
objects was the need to insert explicit type conversions and to transfer properties across these
conversions. Both complications were to some extent alleviated by Lifting and Transfer [19].

Progress tracking is only a small, albeit arguably the most intricate part of Timely Data-
flow. Verifying its safety is an important first step towards our long-term goal of developing a
verified, executable variant of Timely Dataflow and using it as a framework for the verification
of efficient and scalable stream processing algorithms. More modest next steps are to prove
the local propagation algorithm’s termination and to make our formalization executable. We
have made first steps towards the latter goal, by creating a functional, executable variant
of the local propagation’s transition relation [12]. This allowed us to compare our formalized
propagation algorithm to the one implemented in Rust. We found that their input–output
behavior coincides on all example dataflows accompanying the Rust implementation, con-
firming our model’s faithfulness. We are working on including the exchange protocol in this
comparative testing, which poses a challenge because of the protocol’s distributed nature.



M. Brun and S. Decova and A. Lattuada and D. Traytel 10:17

Acknowledgments We thank David Basin and Timothy Roscoe for supporting this work
and Frank McSherry for providing valuable input on our formalization, e.g, by suggesting to
consider the implied_frontier notion and to show that it is what local propagation computes.
David Cock, Jon Howell, and Frank McSherry provided helpful feedback after reading early
drafts of this paper. Dmitriy Traytel is supported by a Novo Nordisk Fonden Start Package
Grant (NNF20OC0063462). Andrea Lattuada is supported by a Google PhD Fellowship.

References
1 Github: Timely dataflow. URL: https://github.com/TimelyDataflow/timely-dataflow/.
2 Materialize: Incrementally-updated materialized views. URL: https://materialize.com.
3 Martín Abadi and Michael Isard. Timely dataflow: A model. In Susanne Graf and Mahesh

Viswanathan, editors, FORTE 2015, volume 9039 of LNCS, pages 131–145. Springer, 2015.
doi:10.1007/978-3-319-19195-9_9.

4 Martín Abadi, Frank McSherry, Derek Gordon Murray, and Thomas L. Rodeheffer. Formal
analysis of a distributed algorithm for tracking progress. In Dirk Beyer and Michele Boreale,
editors, FMOODS/FORTE 2013, volume 7892 of LNCS, pages 5–19. Springer, 2013. doi:
10.1007/978-3-642-38592-6_2.

5 Clemens Ballarin. Locales: A module system for mathematical theories. J. Autom. Reason.,
52(2):123–153, 2014. URL: https://doi.org/10.1007/s10817-013-9284-7.

6 Véronique Benzaken and Evelyne Contejean. A Coq mechanised formal semantics for realistic
SQL queries: formally reconciling SQL and bag relational algebra. In Assia Mahboubi and
Magnus O. Myreen, editors, CPP 2019, pages 249–261. ACM, 2019. doi:10.1145/3293880.
3294107.

7 Véronique Benzaken, Evelyne Contejean, Chantal Keller, and E. Martins. A Coq formalisation
of SQL’s execution engines. In Jeremy Avigad and Assia Mahboubi, editors, ITP 2018, volume
10895 of LNCS, pages 88–107. Springer, 2018. doi:10.1007/978-3-319-94821-8_6.

8 Jasmin Christian Blanchette, Mathias Fleury, and Dmitriy Traytel. Nested multisets, hereditary
multisets, and syntactic ordinals in Isabelle/HOL. In Dale Miller, editor, FSCD 2017, volume 84
of LIPIcs, pages 11:1–11:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.FSCD.2017.11.

9 Matthias Brun, Sára Decova, Andrea Lattuada, and Dmitriy Traytel. Verified progress track-
ing for timely dataflow (extended report), 2021. https://www.github.com/matthias-brun/
progress-tracking-formalization/raw/main/rep.pdf.

10 Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. Verifying safety prop-
erties with the TLA+ proof system. In Jürgen Giesl and Reiner Hähnle, editors, IJCAR 2010,
volume 6173 of LNCS, pages 142–148. Springer, 2010. doi:10.1007/978-3-642-14203-1_12.

11 Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung. Cosette: An automated
prover for SQL. In CIDR 2017. www.cidrdb.org, 2017. URL: http://cidrdb.org/cidr2017/
papers/p51-chu-cidr17.pdf.

12 Sára Decova. Modelling and verification of the Timely Dataflow progress tracking protocol.
Master’s thesis, ETH Zurich, Zurich, 2020. doi:10.3929/ethz-b-000444762.

13 Tomás Díaz, Federico Olmedo, and Éric Tanter. A mechanized formalization of GraphQL.
In Jasmin Blanchette and Catalin Hritcu, editors, CPP 2020, pages 201–214. ACM, 2020.
doi:10.1145/3372885.3373822.

14 Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and Alastair R. Beresford.
Verifying strong eventual consistency in distributed systems. Proc. ACM Program. Lang.,
1(OOPSLA):109:1–109:28, 2017. doi:10.1145/3133933.

15 Travis Hance, Andrea Lattuada, Chris Hawblitzel, Jon Howell, Rob Johnson, and Bryan Parno.
Storage systems are distributed systems (so verify them that way!). In OSDI 2020, pages
99–115. USENIX Association, 2020. URL: https://www.usenix.org/conference/osdi20/
presentation/hance.

ITP 2021

https://github.com/TimelyDataflow/timely-dataflow/
https://materialize.com
https://doi.org/10.1007/978-3-319-19195-9_9
https://doi.org/10.1007/978-3-642-38592-6_2
https://doi.org/10.1007/978-3-642-38592-6_2
https://doi.org/10.1007/s10817-013-9284-7
https://doi.org/10.1145/3293880.3294107
https://doi.org/10.1145/3293880.3294107
https://doi.org/10.1007/978-3-319-94821-8_6
https://doi.org/10.4230/LIPIcs.FSCD.2017.11
https://doi.org/10.4230/LIPIcs.FSCD.2017.11
https://www.github.com/matthias-brun/progress-tracking-formalization/raw/main/rep.pdf
https://www.github.com/matthias-brun/progress-tracking-formalization/raw/main/rep.pdf
https://doi.org/10.1007/978-3-642-14203-1_12
http://cidrdb.org/cidr2017/papers/p51-chu-cidr17.pdf
http://cidrdb.org/cidr2017/papers/p51-chu-cidr17.pdf
https://doi.org/10.3929/ethz-b-000444762
https://doi.org/10.1145/3372885.3373822
https://doi.org/10.1145/3133933
https://www.usenix.org/conference/osdi20/presentation/hance
https://www.usenix.org/conference/osdi20/presentation/hance


10:18 Verified Progress Tracking for Timely Dataflow

16 Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L.
Roberts, Srinath T. V. Setty, and Brian Zill. Ironfleet: proving practical distributed systems
correct. In Ethan L. Miller and Steven Hand, editors, SOSP 2015, pages 1–17. ACM, 2015.
doi:10.1145/2815400.2815428.

17 Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. Actris: session-type
based reasoning in separation logic. Proc. ACM Program. Lang., 4(POPL):6:1–6:30, 2020.
doi:10.1145/3371074.

18 C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, 1978.
doi:10.1145/359576.359585.

19 Brian Huffman and Ondrej Kuncar. Lifting and Transfer: A modular design for quotients in
Isabelle/HOL. In Georges Gonthier and Michael Norrish, editors, CPP 2013, volume 8307 of
LNCS, pages 131–146. Springer, 2013. doi:10.1007/978-3-319-03545-1_9.

20 Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek
Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent separation
logic. J. Funct. Program., 28:e20, 2018. doi:10.1017/S0956796818000151.

21 Leslie Lamport. Paxos made simple, fast, and Byzantine. In Alain Bui and Hacène Fouchal,
editors, OPODIS 2002, volume 3 of Studia Informatica Universalis, pages 7–9. Suger, Saint-
Denis, rue Catulienne, France, 2002.

22 Mohsen Lesani, Christian J. Bell, and Adam Chlipala. Chapar: certified causally consistent
distributed key-value stores. In Rastislav Bodík and Rupak Majumdar, editors, POPL 2016,
pages 357–370. ACM, 2016. doi:10.1145/2837614.2837622.

23 J. Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wisnesky. Toward a verified
relational database management system. In Manuel V. Hermenegildo and Jens Palsberg,
editors, POPL 2010, pages 237–248. ACM, 2010. doi:10.1145/1706299.1706329.

24 Frank McSherry, Andrea Lattuada, Malte Schwarzkopf, and Timothy Roscoe. Shared ar-
rangements: practical inter-query sharing for streaming dataflows. Proc. VLDB Endow.,
13(10):1793–1806, 2020. URL: http://www.vldb.org/pvldb/vol13/p1793-mcsherry.pdf.

25 Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. Differential
dataflow. In CIDR 2013. www.cidrdb.org, 2013. URL: http://cidrdb.org/cidr2013/Papers/
CIDR13_Paper111.pdf.

26 Derek Gordon Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and
Martín Abadi. Naiad: a timely dataflow system. In Michael Kaminsky and Mike Dahlin,
editors, SOSP 2013, pages 439–455. ACM, 2013. doi:10.1145/2517349.2522738.

27 Derek Gordon Murray, Frank McSherry, Michael Isard, Rebecca Isaacs, Paul Barham, and
Martín Abadi. Incremental, iterative data processing with timely dataflow. Commun. ACM,
59(10):75–83, 2016. doi:10.1145/2983551.

28 Diego Ongaro and John K. Ousterhout. In search of an understandable consensus algorithm. In
Garth Gibson and Nickolai Zeldovich, editors, USENIX ATC 2014, pages 305–319. USENIX As-
sociation, 2014. URL: https://www.usenix.org/conference/atc14/technical-sessions/
presentation/ongaro.

29 Lawrence C. Paulson and Jasmin Christian Blanchette. Three years of experience with
Sledgehammer, a practical link between automatic and interactive theorem provers. In Geoff
Sutcliffe, Stephan Schulz, and Eugenia Ternovska, editors, IWIL 2010, volume 2 of EPiC Series
in Computing, pages 1–11. EasyChair, 2010. URL: https://easychair.org/publications/
paper/wV.

30 Ilya Sergey, James R. Wilcox, and Zachary Tatlock. Programming and proving with distributed
protocols. Proc. ACM Program. Lang., 2(POPL):28:1–28:30, 2018. doi:10.1145/3158116.

31 Christoph Sprenger, Tobias Klenze, Marco Eilers, Felix A. Wolf, Peter Müller, Martin Clochard,
and David A. Basin. Igloo: soundly linking compositional refinement and separation logic for
distributed system verification. Proc. ACM Program. Lang., 4(OOPSLA):152:1–152:31, 2020.
doi:10.1145/3428220.

https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/3371074
https://doi.org/10.1145/359576.359585
https://doi.org/10.1007/978-3-319-03545-1_9
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2837614.2837622
https://doi.org/10.1145/1706299.1706329
http://www.vldb.org/pvldb/vol13/p1793-mcsherry.pdf
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper111.pdf
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper111.pdf
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2983551
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://easychair.org/publications/paper/wV
https://easychair.org/publications/paper/wV
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3428220


M. Brun and S. Decova and A. Lattuada and D. Traytel 10:19

32 Makarius Wenzel. Isabelle/Isar—A generic framework for human-readable proof documents.
In Roman Matuszewski and Anna Zalewska, editors, From Insight to Proof: Festschrift in
Honour of Andrzej Trybulec, volume 10(23) of Studies in Logic, Grammar, and Rhetoric.
Uniwersytet w Białymstoku, 2007.

33 James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D.
Ernst, and Thomas E. Anderson. Verdi: a framework for implementing and formally verifying
distributed systems. In David Grove and Steve Blackburn, editors, PLDI 2015, pages 357–368.
ACM, 2015. doi:10.1145/2737924.2737958.

ITP 2021

https://doi.org/10.1145/2737924.2737958

	1 Introduction
	2 Timely Dataflow and Progress Tracking
	3 The Clocks Protocol
	4 Exchanging Progress
	5 Locally Propagating Progress
	6 Progress Tracking
	7 Discussion

